4,212 research outputs found

    The Role of Fluorescence and Human Factors in Quantitative Transdermal Blood and Tissue Analysis Using NIR Raman Spectroscopy

    Get PDF
    This research is part of an ongoing project aimed at the application of combined near infrared (NIR) Raman and fluorescence spectroscopy to noninvasive in vivo blood analysis including but not limited to glucose monitoring. Coping with practicalities of human factors and exploring ways to obtain and use knowledge gained about autofluorescence to improve algorithms for blood and tissue analysis are the general goals of this research. Firstly, the study investigated the various sources of human factors pertinent to our concerns, such as fingerprints, turgor, skin hydration and pigmentation. We then introduced specialized in vivo apparatus including means for precise and reproducible placement of the tissues relative to the optical aperture, i.e., the position detector pressure monitor (PDPM). Based on solid instrumental performances, appropriate methodology is now provided for applying and maintaining pressure to keep surface tissues immobile during experiments while obtaining the desired blood content and flow. Secondly, in vivo human fingertip skin autofluorescence photobleaching under 200 mW 830 nm NIR irradiation is observed and it is characterized that: i) the majority of the photobleached fluorescence originates from static tissue not blood, ii) the bleaching (1/e point) occurs in 101-102 sec timescale, and also iii) a photobleached region remains bleached for at least 45 min but recovers completely within several hours. A corresponding extensive but not exhaustive in vitro systematic study narrowed down the major contributors of such fluorescence and bleaching to collagen, melanin, plasma and hemoglobin: two major static tissue constituents and two major blood proteins. Thirdly, we established that measuring the inelastic and elastic emissions simultaneously leads to a sensitive probe for volume changes of both red blood cells and plasma. An algorithm based on measurements obtained while performing research needed for this thesis, as well as some empirical calibration approaches, was presented. The calibrated algorithm showed real potential to track hematocrit variations in cardiac pulses, centrifugal loading, blood vessel blockage using tourniquet, and even during as subtle an occurrence as in a Valsalva maneuver. Finally, NIR fluorescence and photochemistry of pentosidine, a representative of the advanced glycation endproducts (AGEs) which accumulate with age and hyperglycemia, was studied. The results indicate that oxygen plays a pivotal role in its photobleaching process. We hypothesized and offered proofs showing that pentosidine is a 1O2 sensitizer that is also subject to attack by the 1O2 resulting in the photobleaching that is observed when probing tissue using NIR. The photobleaching reaction is kinetically first order in pentosidine and ground state oxygen, and in vivo effectively first order with NIR irradiation also

    Structural basis of inter-domain electron transfer in Ncb5or, a redox enzyme implicated in diabetes and lipid metabolism

    Get PDF
    NADH cytochrome b5 oxidoreductase (Ncb5or) is a multi-domain redox enzyme found in all animal tissues and associated with the endoplasmic reticulum (ER). Ncb5or contains (from N-terminus to C terminus) a novel N-terminal region, the b5 domain (Ncb5or-b5), the CS domain, and the b5R domain (Ncb5or-b5R). Ncb5or-b5, the heme binding domain, is homologous to microsomal cytochrome b5 (Cyb5A) and belongs to cytochrome b5 superfamily. Ncb5or-b5R, the FAD (flavin adenine dinucleotide) binding domain, is homologous to cytochrome b5 reductase (Cyb5R3) and belongs to ferredoxin NADP+ reductase superfamily. Both superfamilies are of great biological significance whose members have important functions. The CS domain can be assigned into the heat shock protein 20 (HSP20, or p23) family, whose members are known to mediate protein-protein interactions. Ncb5or is unique in containing these domains and employing a novel sequence as the N-terminal region. Cyb5A and Cyb5R3 have been shown to form a complex to donate electrons to stearoyl-CoA desaturase (SCD) in fatty acid desaturation in vitro. Monounsaturated fatty acids are preferentially used in triglyceride synthesis for lipid storage. Mice with hepatic deletion of Cyb5A show no significant defect in lipid metabolism, whereas Ncb5or null mice exhibit diabetes, lipoatrophy and impaired SCD activity. We hypothesize that Ncb5or, as a fusion of both Cyb5A and Cyb5R3-like domains, serves as an alternative electron donor to SCD in vivo. Ncb5or-b5 shows unique structural and functional features, such as, low sequence homology to other family members, displacement of the second heme-ligating His residue, a decrease in the number of surface-charged residues, and a much lower redox potential at the heme center compared with Cyb5A. In order to understand how these differences between Ncb5or and Cyb5A contribute to their unique structural and functional properties in electron transfer, we solved the crystal structure of Ncb5or-b5 and performed kinetic assays by using various domain combinations. Our 1.25 Ă… crystal structure shows that Ncb5or-b5 has a general b5 fold. However, Ncb5or-b5 has a unique heme environment, namely the two heme-ligating His residues are nearly perpendicular to each other. The latter feature agrees with a large gmax value in electron paramagnetic resonance (EPR) spectra. This makes Ncb5or the first example with a tetragonally distorted heme environment in the cytochrome b5 superfamily. Lower density of charge on the surface of Ncb5or-b5 suggests weaker ionic interaction between Ncb5or-b5 and Ncb5or-b5R than that between Cyb5A and Cyb5R3. The lack of Ncb5or-b5/Ncb5or-b5R complex formation and lower rates of electron transfer than Cyb5A/Cyb5R3 are consistent with this hypothesis. Low affinity between Ncb5or-b5 and Ncb5or-b5R prompted a search for other factors that facilitate the inter-domain electron transfer. Specifically, the role of the N-terminal region, a region rich in random coils but with little homology to known proteins, was explored. A reductionist approach was used to test various domains of Ncb5or with kinetic assays and spectral analyses, such as circular dichroism and nuclear magnetic resonance. I have unveiled the role of the N-terminal region for the first time: the N-terminal region facilitates inter-domain electron transfer by cooperatively interacting with the CS domain and the heme center of Ncb5or-b5. The formation of tertiary structure in the N-terminal region is governed by the region from Gly22 through Trp37, especially Trp37, and this region is essential for electron transfer. This feature suggests a potential mechanism to facilitate the inter-domain electron transfer in Ncb5or
    • …
    corecore